
ORNL is managed by UT-Battelle LLC for the US Department of Energy

Performance portability experiments with the Wilson-Dslash Kernel
from Lattice QCD, using Data-Parallel C++/SYCL and Kokkos

Balint Joo joob@ornl.gov

+ very many co-authors (next page)

mailto:joob@ornl.gov

Dramatis Personae

• This work is a continuation of work that many have contributed to. My thanks and
acknowledgements to my Co-Authors for this talk below

• NERSC: Jack Deslippe, Thorsten Kurth (now NVIDIA), Doug Doerfler

• Kokkos Team:

o Sandia National Labs: Christian R. Trott, Dan Ibanez, Dan Sunderland

o ORNL: Damien Lebrun-Grandie

o ALCF: Nevin Liber

• NVIDIA: Kate Clark
• Intel: Jeongnim Kim, Patrick Steinbrecher

• AMD: Nick Curtis, Rene van Oostrum

2

Introduction/Recap from SC’19 P3HPC Workshop

• Lattice QCD codes need to be performance portable for the exascale

• Next set of pre-exascale and exascale systems all use different accelerators

o NERSC Perlmutter (NVIDIA GPUs)

o ALCF Aurora (Intel Xe Accelerators)

o OLCF Frontier (AMD GPUs)

• Many portable programming models available

o OpenMP, OpenACC, Kokkos, Raja, DPC++/SYCL, HIP, pSTL, …

• Need a “proof of non-death” to evaluate programing models for Lattice QCD codes

• We chose to implement a Wilson Dslash operator as a Mini-App

o Our choice was to look at Kokkos and DPC++/SYCL

3

Wilson Dslash Operator in a nutshell

4

t

t-1

t+1

y

z
t

• 4D nearest neighbor, covariant derivative operator
• 3x4 component complex ‘spinors’ on the lattice sites
• 3x3 complex matrices on the links
• (1 +/- γµ) are ‘spin projection’ operators
• Ideally can reuse 7 out of 8 neighbors from cache
• due to even-odd coloring: no reuse of links
• AI between 0.87-1.72 depending on neighbor reuse & RFOs
o Memory Bandwidth Bound on current accelerator

architectures for reasonably large lattice

SIMD Vectorization

• Treat SIMD lanes as virtual node (VN) grid
• Layout (block-domains) lattice on VN grid
• Local lattice per lane -> outer lattice
• Nearest-Neighbor access on local lattice boundary =

access of neighboring lane’s data
o SIMD shuffle/permutation
o for 2logN VN grid (up to 16 lanes for 4D) can get

neighbor’s lane-ID using bitwise XOR
o for more than 16 lanes, split into power of 2 sets of

up to16, and different bitwise XORs needed for
each set => use general permutation

• SIMD offers memory access benefits too
o aligned/coalesced loads & stores

5

Vector Unit of Length N virtual node (VN) grid

Lay-out lattice over
virtual node grid

Ascribe corresponding sites
from virt. node grid into

vector lanes

Virtual Node Vectorization
(P. Boyle, e.g. in Grid, BFM)
e.g. arXiv:1512.03487[hep-lat]

outer
lattice

outer lattice
lanes

permute

permute

https://arxiv.org/abs/1512.03487

Performance Portability via Kokkos

6

• Kokkos provides portability via back-
ends: e.g. OpenMP, CUDA, …

• Most abstractions are provided in a
C++ Header library
o parallel_for, reduction, scans & more
o our work uses parallel_for

• Kokkos provides the Kokkos View
data-type
o user can customize index order
o explicit memory movement only
o select memory space via policy

• Bind Execution to Execution Space
o select back end via policy

Kokkos Abstractions

CUDA
Back-End

OpenMP
Back-End

OpenMP
target

Back-End

HIP
Back-End

SYCL/DP
CPP

Back-End

Stable and
Production ready

In Development
NEW: HIP and OpenMP
Target Back Ends now

Usable!!!

Portability via SYCL

7

Intel LLVM
OneAPI/DPCPP

Codeplay
ComputeCPP

HIP-
SYCL

SPIR/SPIRV

HD
Graphics

FPGA

Intel OpenCL Drivers POCL Driver

Xeon
Server

NVIDIA
GPU

PTX

AMD
GPU

CUDA
driver

ROCm
driver

HIP

Other
CPU

SPIR/SPI
RV

?

Consistency
in implementing

standard (?)

Manufacturers
all have favorite

standards

Codeplay
Backend

NEW!

Summary at the time of SC’19 P3HPC workshop

• Kokkos did well on all
platforms.
o CPU targets need a

custom SIMD type
o Hand coded for AVX512
• SYCL/DPC++ did reasonably

well
o using Intel OpenCL

runtime on SKX/Gen-9
o using Codeplay Compiler

with POCL OpenCL on
V100

8

V=1

V=16

V=16

What is new

• Tested DPC++ Subgroup Extensions for SIMD
• Tested Codeplay CUDA Back End for Intel Public LLVM compiler
• Tested Kokkos HIP-backend
• Tested Kokkos OpenMP Offload
o Intel OneAPI ICPX implementation for Gen-9
o LLVM Clang-10 for NVIDIA-NVPTX back-end
o Cray-CCE v. 10.0.1 on NVIDIA back end

9

Intel Subgroup Extensions (proposed)
• Similar to Warp/Wavefront level

SIMD in CUDA/HIP

• Can get subgroup from nd_item<>
index of work-item

• Single Load/Store per subgroup

10

[[cl::intel_reqd_sub_group_size(VN::VecLen)]]
inline
void operator()(cl::sycl::nd_item<2> nd_idx) const {

// VN Grid site id.
size_t site = nd_idx.get_global_id(0);

// Get the subgroup that I am a part of
sycl::intel::sub_group sg = nd_idx.get_sub_group();

template<typename T, sycl::access::address_space Space>
inline MGComplex< typename BaseType<T>::Type>
Load(size_t offset, const sycl::multi_ptr<T,Space> ptr, const sycl::intel::sub_group& sg)
{

using TypeInMGComplex = typename BaseType<T>::Type;
sycl::vec<TypeInMGComplex,2> load_vec = sg.load<2,TypeInMGComplex,Space>(ptr + offset);
return MGComplex<TypeInMGComplex>(load_vec.s0(),load_vec.s1());

}

subgroup size
elements

offset in T’s

ptr
sg.load<2,…>()

Sub Group Permutations

11

// Masks for SUBGROUP SIMD
static constexpr std::array<int,8> x_mask = {0,1,2,3,4,5,6,7}; // Mask array for element ‘i’
static constexpr std::array<int,8> y_mask = {1,0,3,2,5,4,7,6}; // stores source lane for lane ‘i’
static constexpr std::array<int,8> z_mask = {2,3,0,1,6,7,4,5}; //
static constexpr std::array<int,8> t_mask = {4,5,6,7,0,1,2,3}; //

template<typename T, int N>
static inline MGComplex<T> permute(const std::array<int,N> mask,

const MGComplex<T>& in,
const sycl::intel::sub_group& sg)

{
MGComplex<T> ret_val;
ret_val.real(sg.shuffle(in.real(), mask[sg.get_local_id()[0]])); // Look up source_id in mask[]
ret_val.imag(sg.shuffle(in.imag(), mask[sg.get_local_id()[0]])); // sg.get_local_id() return ‘lane-id’
return ret_val;

}

template<> inline
MGComplex<float> Permute<float,8>::permute_xor_Y(const MGComplex<float>& in,

const sycl::intel::sub_group& sg) {
return MGComplex<float>{ sg.shuffle_xor(in.real(), {1}),

sg.shuffle_xor(in.imag(), {1}) } ; // XOR mask is 0xb001, {} to init id<1>

Bitwise XOR Based

Generic

Preliminary Subgroup SIMD Results

• Tests used lattice with 324 sites, Intel OneAPI public beta=8 compiler (clang), Intel Iris Pro Graphics 580
with 128MB EDRAM

• In these tests using subgroup based SIMD did not provide a benefit on Gen-9, best performance is
naive V=1 case.

• Further investigation could be interesting as well as test on a Xeon part.

12

DPC++ with CUDA Back End from Codeplay

• Lattice with 324 sites, dpc++/11.0.0-20200721 from Doug Doerfler on Cori GPU based on LLVM11
• Compiler built the plain SYCL code and the code ran fine
• Performance is not as good as Codeplay SYCL + POCL

• Compiler compiled code using subgroup extensions but had linking issues
o not really a surprise as I didn’t expect support for extensions

13

Kokkos and OpenMP Target

• Good news: OpenMP Target for Kokkos is functional in several compilers

• Bad News: Currently, Out of the Box performance seems poor — may
need specific optimization/tuning

14

Kokkos with HIP Backend

• ORNL is working with AMD on a HIP Backend for Kokkos (led by Damien Lebrun-Grandie)
• WilsonDslash mini-app over Kokkos compiles and runs with the HIP back end
• Performance was low, compared to expectations based on available memory bandwidth (1

TB/s peak mem BW on MI50/MI60 devices)
• We went through a deep dive with Nick Curtis and Rene van Oostrum from AMD
o found: there seemed to be high register use, and low occupancy and some amount of

register spilling going on
o changing out neighbor index calculations to table lookup made a considerable difference:

reduced register count & spilling, increased performance by ~1.24x
o integer division appears to be expensive on MI50, possible to fix with libdivide ?
o Moral: cannot escape hardware, the algorithmic choice of computing the index of a

neighbor or looking it up may not be performance portable => Allow for choice in
implementation

15

Conclusions & Future Work

• Considerable progress since SC’19 in compilers

o DPC++ with CUDA Back End now tested and working, Sub Group extension works in native back
end.

o Kokkos tested with OpenMP-Target backend using several compilers

o Kokkos HIP backend is quite functional from point of view of Dslash Mini-App

• Performance is not uniformly good yet accross the board

o e.g. did not expect DPC++ with Subgroup SIMD to be outperformed by non SIMD code

o OpenMP Target performance may need to be tuned/investigated

• Future work: Kokkos has a public SIMD Type in https://github.com/kokkos/simd-math

o I have added a proposal for permutes in a private branch (PR#18)

o Still to integrate these into KokkosDslash

• Lessons learned:

o Fantastic that so many OpenMP implementations now compile and run

o Cannot escape hardware features (e.g. integer divisions etc).

16

https://github.com/kokkos/simd-math
https://github.com/bjoo/simd-math

Acknowledgements

• B. Joo acknowledges funding from the U.S. Department of Energy, Office of Science, Office of Advanced
Scientific Computing Research under the Exascale Computing Project (2.2.1.01 ADSE03 Lattice QCD)

• B. Joo acknowledges funding from the U.S. Department of Energy, Office of Science, Offices of Nuclear
Physics, High Energy Physics and Advanced Scientific Computing Research under the SciDAC-4 program.

• B. Joo acknowledges travel funding from NERSC for a summer Affiliate Appointment for work on Kokkos
• The 2017 ORNL Hackathon at NASA was a collaboration between and used resources of both the

National Aeronautics and Space Administration and the Oak Ridge Leadership Computing Facility at Oak
Ridge National Laboratory. Oak Ridge Nation Laboratory is supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC05-00OR22725.

• We gratefully acknowledge use of computer time at JeffersonLab (SciPhi XVI cluster), K80 Development
node, NERSC Cori and Cori-GPU, OLCF Summit, Lyra, and the Cray Frontier Center of Excellence Tulip
System

17

